


Scanned, Typed, OCR-ed, and PDF by 
Steve Parry-Thomas 3nd July 2004. 

 
This PDF was created to preserve the 

manual for the future. 
 

For all ZX Spectrum, Plus D 
And WoS users 

 
Thanks to David Russell for the 
Loan of the original Manual. 

 

(PDF For Michael & Joshua)

Hyper-links are in the contents, so you can jump to the 
bit you want 

 



Pick-POKE-It 
 

from Miles Gordon Technology 
 

For use with MGT'B PLUS D Interface 
 

ZX Spectrum 48K 
ZX Spectrum + 

ZX Spectrum +128 
ZX Spectrum 128K + 2 

 

USER MANUAL 
 

(c) Draysoft 1988 
 

NOTICE 
 

The software, this manual, and the information contained herein, is 
copyright  material and may not  be reproduced, transcribed, stored 
in a  retrieval system,  translated into  any language  or computer 
language, or  transmitted in any form  whatsoever without the prior 
written consent of Miles Gordon Technology. 
 

The  manual   is  intended  to  provide . the  user  with  detailed 
information adequate  for the efficient  installation and operation 
of the  software involved.   However, while  every effort  has been 
made to  ensure accuracy, the  writers and the  publisher assume no 
liability  resulting from errors  in the software,  or omissions in 
this manual, or from the use of the information contained herein. 
 

Miles Gordon Technology reserves  the  right  both  to  change  the 
specifications  of the software and to revise this publication from 
time to time without  obligation  to  notify  any  person  of  such 
revision or changes. 
 



CONTENTS
INTRODUCTION ...............................................   4

MODIFYING YOUR SYSTEM DISCS ................................   5

What if you can't load Pick-POKE-It                (5)

GENERAL FEATURES OF Pick-POKE-It ...........................   6

The Normal PLUS D Snapshot Facilities              (6)
Use with Two Disc Drives                           (6)
Changing Discs                                     (6)
Exiting from Pick-POKE-It                          (6)
Pick-POKE-It Temporary Files                       (7)
Crashes                                            (7)

AN INTRODUCTION TO MACHINE-CODE ............................   8

ENTERING INFORMATION IN Pick-POKE-It MODE ..................  10

Entering Addresses                                (10)
Default Address Values                            (10)
Number Entry                                      (10)
Entering ASCII Values                             (11)
Using a Printer                                   (11)

Pick-POKE-It FACILITIES ....................................  12

The Disassembler                                  (12)
Display Memory                                    (14)
Edit RAM Contents                                 (16)
Search RAM                                        (18)

ADDITIONAL FEATURES FOR PROGRAMMERS ........................  20

Z80 Registers                                     (20)
Binary Number Entry                               (20)
Editing Half of a Register Pair                   (20)
Bank Switching                                    (21)

(1) Bank Switch (128K Spectrums only)           (21)
(2) Screen and Variable Area (48K/128K Spectrum (21)

Calculating the Address Offset                    (22)

RECOMMENDED READING LIST ...................................  23

ANSWERS TO QUESTIONS .......................................  23



INTRODUCTION

Pick-POKE-It  adds additional  facilities to  the PLUS  D interface 
which allow the  user to  explore and  modify existing  programs as 
well as providing a very powerful set of tools for machine code and 
BASIC programmers, available at  the  touch  of  a  button  without 
affecting the program being worked on. 
 
Normally,  the PLUS D offers five snapshot facilities - two methods 
of  printing screen-shots, as  well as a  screen, a 49K  and a 128K 
save to  disc.  When the PLUS D  DOS is modified with Pick-POKE-It 
all  these   features  are  retained,  but   there  are  six  extra 
facilities.   In the first place, the  contents of the Spectrum RAM 
can   be  displayed,  edited,  searched  and  disassembled,  making 
Pick-POKE-It an essential tool  both  for  beginners  who  wish  to 
modify  their games software and for more experienced users writing 
their own programs.  More  advanced  users  will  be  able  to  use 
Pick-POKE-It .to inspect and edit the  Z80 registers, and to switch 
from one  bank of memory  to another, particularly  useful with the 
128K Spectrum. 
 
Of special note are the following Pick-POKE-It features: 
 

The software has been  professionally  designed  for  ease  of 
operation  and clarity of display; it is fully menu-driven and 
allows 15 lines  of  code  to  be  displayed  on  the  screen 
While experienced programmers  will be  able to  make greatest 
use  of  the  software,  Pick-POKE-It  will  be  an  excellent 
introduction to  machine-code for the novice,  and is a useful 
tool  even for those  who have little  interest in programming 
but  who simply wish to breathe  new life (or Infinite lives') 
into their games. 
 
By  making use of  the PLUS D's  snapshot button. PICK-POKE-It 
allows you  to inspect, edit or print  out the contents of RAM 
while a program  is still  running.  This  means that  you are 
able to inspect any changes that you may have made immediately 
by returning  to  the  original  program,  and  when  you  are 
satisfied  with your changes, re-commence or save the modified 
program  as required.  And of course, the PLUS D will continue 
to  work at Its normal  speed - loading and  saving a full 48K 
program in less than four seconds. 
 

If  machine code la  new to you,  there will be  enough guidance in 
this manual  to get you  started and to  use Pick-POKE-It properly. 
But  if you'd  like to  learn more.  you'll need  to do  some extra 
reading too.   There's a suggested  reading-list at the  end of the 
manual.  You'll also find that the various Spectrum magazines print 
articles  to introduce their readers to machine-code and to suggest 
how commercial software can be modified with Pokes. 
 



MODIFYING YOUR SYSTEM DISCS

All you  need to create your first  Pick-POKE-It system disc is the 
program supplied on cassette and a PLUS D disc containing a working 
SYSTEM file. This system disc must have at least 48K of free space. 
 
It's  a good idea, however, to start by producing a disc version of 
the  program on cassette, and to use this as a master for producing 
future Pick-POKE-It  system discs.  To do  this. you'll require the 
disc to have at least 80K of free space. 
 
Start  with the PLUS D system booted  in the normal way.  Then with 
the disc you  wish to use  in the drive  (Drive 1 if  you have more 
than one), load the program from tape using the command: 
 

LOAD "" 
Then simply follow the instructions on-screen. 
 
If  you now  catalogue your  disc you  should see  three additional 
files as below: 

+DPP1 
+DPP2 
+DPP3 

 
Each  of these files is  about 4K long.  You will also notice that 
your original system file has been replaced by one called: 

+SYS PP1 
 

If  you answered "Yes" when asked if you wished to save the program 
on tape onto your disc, then two additional tiles will be present: 

PICKPOKEIT 
POKEITCODE 

 
Later you  can  load  the  PICKPOKEIT  program  to  create  further 
Pick-POKE-It  system discs without having to use the cassette - but 
keep the tape safe somewhere as a back-up. 
 
From now  on, if you boot the  system using the Pick-POKE-It system 
disc, the  extra  facilities  will  always  be  available  to  you. 
although for normal  operation the  PLUS D  will behave  as before. 
But when you  press the snapshot  button and then  the Spectrum key 
"P",  there will be  a few seconds  of disc activity,  and then the 
Pick-POKE-It  menu will be displayed.  Next  we describe how to use 
the various menu options. 
 
WHAT IF YOU CAN'T LOAD PICK-POKE-IT
A few PLUS D users are still using Version 1 of the ROM. which was 
used  in PLUS D's sold in December 1987-January 1988.  Pick-POKE-It 
won't work  with the version 1 ROM.   If you find that Pick-POKE-It 
doesn't work. check the serial number on the bottom of your PLUS D. 
If it's a 4-figure number commencing with 1, then you have a PLUS D 
with  the Version 1 ROM.  Call MGT on 0792-791100 and we'll arrange 
a replacement ROM for you. 
 



GENERAL FEATURES OF Pick-POKE-It

THE NORMAL PLUS D SNAPSHOT FACILITIES

These operate exactly as before.  Press the snapshot button and 
then select any one of keys I to 5 on the Spectrum. 
 
If you  press the snapshot  button, then key  "P", the Pick-POKE-It 
menu  will appear.  The menu confirms that if you now press keys 1 
to 5, the same original PLUS D snapshot facilities for printing and 
saving to disc are retained. 
 
USE WITH TWO DISC DRIVES

If, after moving Into snapshot mode. you  hold down the CAPS SHIFT 
key while selecting keys 3. 4 or 5. the drive selected will change 
from one to the other. 
 
If you have 2  disc  drives  and  wish  to  use  the  Pick-POKE-It 
facilities on a program contained on a disc which does not have the 
Pick-POKE-It  system files, then you can force Pick-POKE-It to take 
its  tiles from the alternate disc by holding down CAPS SHIFT while 
you press "P". 
 
But  if you wish to save a file to disc from the Pick-POKE-It Menu, 
then the destination  disc (i.e. the  disc on which  you are saving 
the file) must have the Pick-POKE-It system on it. 
 
CHANGING DISCS

Once you are  in the Pick-POKE-It  mode, you should  not change the 
Pick-POKE-It system  disc unless you  are replacing it  with a disc 
also containing  the Pick-POKE-It  files, or  unless you  exit from 
Pick-POKE-It first.   If you do. and then  try to select another of 
the  options from the  Pick-POKE-It menu, your  Spectrum will crash 
(though all is not lost! - see below). 
 
EXITING FROM Pick-POKE-It

When the Pick-POKE-It menu is  displayed,  press  key  "X"  on  the 
Spectrum to return  to the  normal PLUS  D operating  system.  This 
means  that you can modify a  program in memory using Pick-POKE-It, 
then exit, and snapshot  save the  modified program  on a  disc not 
containing the Pick-POKE-It system files. 
 
When you are using any of the special Pick-POKE-It facilities, then 
key "X" will return you to the main Pick-POKE-It menu. 
 



Pick-POKE-It TEMPORARY FILES

When you press the  snapshot button  and key  "P". you'll  hear the 
disc drive spinning into  operation  for  a  few  seconds.   What's 
happening  here is that  the software is setting up temporary tiled 
on disc so that there  can  be  no  loss  of  RAM  data  while  the 
Pick-POKE-It facilities are being used. 
 
These files  are given the names  DraySoftSC and DraySoftPG.  Don't 
give these  file-names to  any files  that you  create -  though we 
can't imagine why you should want to! 
 
When  you  exit  from  Pick-POKE-It  by  pressing  key  "X",  these 
temporary files will be automatically erased. 
 
If the computer crashes  while  you  are  using  Pick-POKE-It.  the 
temporary file will be retained on the disc so that you can restore 
it.  You'll need to boot up the Pick-POKE-It system again, and then 
follow  the instructions in the section  on Bank Switching later in 
this manual. 
 
In   these  circumstances,  the  temporary  files  will  be  erased 
automatically for you later - you don't need to worry about it. 
Because  Pick-POKE-It writes to your disc,  you must make sure that 
your disc  is  not  write-protected  before  you  start  work  with 
Pick-POKE-It. 
 
CRASHES

If your  computer crashes  while you  are using  Pick-POKE-It, then 
you'll need to turn off the  electrical  power,  then  turn  it  on 
again, and reboot from  scratch.   The  temporary  files  described 
above will still remain on disc. 
 



AN INTRODUCTION TO MACHINE-CODE

We're not going to attempt  to  teach  machine-code  here,  but  if 
you're a newcomer  there are  certain principles  that you  need to 
understand to make effective use of Pick-POKE-It. 
 
You'll probably  have done at least  some elementary programming in 
BASIC.  BASIC  is  a  high-level  computer  language  -  high-level 
because it uses terms  which  are  familiar  to  all  of  us.   For 
example, it's  easy to understand  what LOAD and  SAVE mean because 
these have meanings close to those in everyday use. 
 
But while  we understand the words, they  mean nothing to a machine 
like a  computer.  What the  computer CAN understand  is whether or 
not  an electrical signal is present, whether it is on or off.  The 
conventional  way to present this information  is to use the Binary 
system: Instead of using "on" or "off", we use 1 or 0. 
 
The  Spectrum is  an 8-bit  computer, meaning  that eight  of these 
signals  can be  sent in  parallel to  the central  processing unit 
(CPU) at any one time.  Thus the signals being sent at any one time 
could be represented as 01101101 or 0101.101 . 
 
Did you have to look at these  numbers twice to see the difference 
between  them?  That's the  problem that programmers  would face if 
they had to work in Binary code.  While the machine understands the 
signals, it would be  very  difficult  to  read  pages  of  numbers 
written in Binary: our programs would be filled with errors. 
 
That's why most people start  programming  in  BASIC,  which  is  - 
debatably -  the easiest  of the  programming languages.   When you 
type LOAD, a series of  interpretations  are  made  until  the  CPU 
receives an  electrical signal that it  can understand.  But here's 
another  problem.  The interpretations  take time -  fractions of a 
second  perhaps, but enough to slow down a program appreciably.  If 
we  had to write  our computer games  in BASIC, they  would be very 
slow-moving. 
 
And so. programmers use an intermediate language which ie closer to 
Binary,  but at the same time relatively easy to read - or at least 
it is if  you've  had  some  practice.   This  language  is  called 
machine-code. 
 
Machine-code can  be represented in either  Decimal numbers - those 
that are in  everyday use -  or Hex, which  stands for Hexadecimal. 
The Hexadecimal system is a way of arranging numbers in units of 16 
- 0-1-2 3-4-5-6-7-8-9-A-B-C-D-E-F.   Conventionally Hex numbers are 
preceded by  the sign #.  Thus. #3B equals  59 in Decimal [(3 x 16) 
plus  11]; #EA equals 234  [(14 x 16) plus  10].  For practice, try 
converting  the following Hex numbers to Decimal - don't worry, you 
won't  have to do this while using Pick-POKE-It and the answers are 
on the last page of this manual: 
 



#5B;   #F2;   #20 (take care - it's not 20);   #29C; 
#BFO;   #112A;   #6E1F;   #ABIO;   #FFFF 
(Go on - try it before you go on to the next section!) 

 
This will probably seem a strange - and unnecessarily complicated - 
method of counting.  But  for  the  computer  engineer  or  serious 
programmer, it's  a better  method than  Decimal for  the following 
reasons: 
 
The computer works In a  Binary manner (remember the electrical 
signals  that are either on or off?).  There's a direct correlation 
between  Hex and Binary.  In simple terms, the Decimal number 16 is 
represented by #10 or by 10000 in Binary; 256 - an important number 
in computing - is represented by #100 or by 100000000 In Binary. 
 
- Conversely there's very little  relation between Decimal numbers 
and  Binary.  10 in Decimal is 1010  in Binary; 100 is 1100100; and 
1000 is 1111101000. 
 
Hex   numbers  are  relatively  easy   to  remember  and  read. 
particularly where large  values are  concerned.  For  example  the 
top location in the Spectrum's memory Is 65535 in Decimal but #FFFF 
in Hex. 
 
When  using Pick-POKE-It. you'll see information about addresses In 
the Spectrum's  memory.  Consider  the address  as being  the place 
where  information is stored, rather in the same way that you might 
put messages into somebody's pigeon-hole  at  work  or  at  school. 
There  are 65535 (- #FFFF) addresses/pigeon-holes in the Spectrum s 
memory, and the machine  regularly  checks  each  of  them  to  see 
whether any messages have been left there; if it find a message  it 
acts  upon it.   Some of  the locations  are filled  with permanent 
information for standard control of  the  computer:  this  is  from 
address 0 to 16384 (- #4000).  Then addresses up to 23754 (- #5CCA) 
are  taken up by messages affecting,  for example, the screen.  The 
remainder  of the memory  is reserved for  messages which determine 
how a program runs. and is the area that we are primarily concerned 
with when we wish to customise software. 
 
Many of the addresses may remain empty; but where messages are left 
Pick-POKE-It will show these  as  machine-code  instructions.  The 
maximum value of an instruction will be 255 in Decimal or #FF. 
If you're a  beginner,  you  don't  need  to  understand  what  the 
machine-code  Instruction   means.    Indeed,   usually   sets   of 
instructions act together, so  a  single  Instruction may  have  a 
different  significance at one address  when compared with another. 
However, as long as you understand what we mean by Hex and Decimal, 
by  address and Instruction, then you will be able to follow a very 
simple set  of rules to customise your  software - to give yourself 
infinite lives  or energy  in a  game. (or  example, or  perhaps to 
change the text on the screen.   If you want to go on to learn more 
about machine-code later, all well and good. 
 



ENTERING INFORMATION IN Pick-POKE-It MODE

ENTERING ADDRESSES

When using one  of the  Pick-POKE-It facilities,  you are  asked to 
enter  an address, and the value can be entered either as a Decimal 
number or in Hex.  For Hexadecimal values the entry must start with 
a "#" character;  you don't need  to mark Decimal  numbers - simply 
enter the number.   Pick-POKE-It checks  all entries  for validity. 
If you've  made an error (for example, if  the number is too low or 
too high)  an appropriate error report is  given, and you are asked 
to  enter the value again.   If you wish to  change your entry, use 
the  Spectrum's normal character delete key (or keys in the case of 
the Spectrum 48K). 
 
DEFAULT ADDRESS VALUES

Since  the Pick-POKE-It functions are intended only to be used with 
RAM (the  area of memory  that changes when  programs are running), 
all addresses  below  16384  (#4000)  are  invalid  and  cannot  be 
entered.  Additionally, since the area of memory from address 16384 
(#4000)  to 23754 (#5CCA)  contains the screen  image, channels and 
Spectrum system variables,  this area  changes as  the Pick-POKE-It 
programs  run.  To overcome this, the original RAM data is saved as 
a temporary file on the disc and a special facility is provided for 
looking  at this  area.  This  facility is  described later  in the 
"Bank Switch" section. 
 
If, when  you  are  asked  for  a  start  address  In  any  of  the 
Pick-POKE-It  programs, you  simply press  ENTER, then  the default 
value  of 23755 (#5CCB) will be automatically entered, because this 
is  where you are  likely to want  to start.  However,  if you have 
chosen  to start with a higher address,  then the next time you are 
asked  for a start address, ENTER will  take you to the place where 
you started  before -  provided you  have not  used another  of the 
Pick-POKE-It programs in the Interim. 
 
NUMBER ENTRY

When you are editing  the RAM  contents or  searching the  RAM, you 
will  be asked to enter  a value as well  as specifying an address. 
If you are entering  a  number  -  which  will  be  a  machine-code 
instruction  - it can be either a Decimal number or a Hex value, in 
which  case you must mark  It with a "#".   All entries are checked 
for validity, and if necessary an appropriate error message will be 
displayed and  a new value  requested.  You can  use the Spectrum's 
delete key(s) if you wish to change what you have entered. 
 



ENTERING ASCII VALUES

When you are using Pick-POKE-It's Search and Edit programs you are 
allowed to look for or replace a string of characters.   For 
example, you might want to find the part of the program where the 
instructions to print the High Score table are printed on screen, 
so you'd be searching for the character string "High Score'. By 
convention, the letters, numbers and sign conventions which appear 
on the computer keyboard are known as ASCII values. 
 
In this example, when Pick-POKE-It asks you for the value you're 
searching for, you can type $High Score, and the appropriate part 
of the program can be located. 
 
Whenever you wish to enter an ASCII value, simply type $ and follow 
it directly with the required text.   You don't need to type in 
inverted commas. The maximum length of an ASCII string which can 
be entered at one time is 29 characters, not counting the $ at the 
start. No $ is required at the end. and the string can contain “$” 
characters if required. 
 
USING A PRINTER

The Disassembler and Display Memory programs can send their output 
to the printer port. using the set-up from your original PLUS D 
system file. When you ask the information to be sent to the 
printer the program will ask for an end address. If ENTER alone 
is pressed, then the default value of 65535 (#FFFF) - the top of 
the Spectrum's RAM will be used. 
 
Printing can be terminated at any time by pressing key "X" - 
although printing will obviously continue until your printer's 
buffer is empty. 
 
Now that you've learnt the basic principles of Pick-POKE-It. we'll 
start using the facilities.   Don't be afraid to experiment! If 
anything goes wrong, your original program will still be on disc. 
Remember that you must keep a disc with the Pick-POKE-It programs 
in drive 1 when you are using the Pick-POKE-It programs. And if 
you do get into trouble you can always escape from Pick-POKE-It and 
return to the original PLUS D facilities by pressing key "X". 
 



Pick-POKE-It FACILITIES

THE DISASSEMBLER

Pick-POKE-It’s Disassembler allows you  to  display  or  print  out 
machine code  In the  Spectrum's RAM,  together with  the Mnemonic. 
 (For non-programmers,  the Mnemonic  is a  sort of  short-hand that 
programmers use  to note  the instruction  which is  actually being 
given to the CPU.  If you want to know more, you'll need to do some 
reading  - any of the books on our recommended reading list will be 
suitable.) 
 
Typically, you'll display or print the disassembly when you want to 
see a machine-code listing of the entire program held in RAM. 
 
To use the Disassembler, press the Snapshot Button, then key "P" to 
enter the  Pick-POKE-It routines.  Then  press key 6  and you'll be 
asked  to specify the start address.  If you want to see the entire 
program,  press ENTER and the listing will automatically start from 
address 23755 (#5CCB).  Similarly, if you press ENTER when asked to 
specify the  end address, Pick-POKE-It  will default to  the top of 
RAM -  location 65535 (#FFFF).    Then you'll be  asked whether you 
wish to  print out the listing.  If you  do. press Y; if not simply 
press ENTER. 
 
For  each Instruction to the Z80 processor, you'll see the address, 
the bytes forming the instruction, and the Mnemonic displayed, in a 
form  like this (although the actual  values will be different when 
you try it): 
 

SCCB     00           HOP 
 5CCC     013700       LD     BC.0037 
 5CCF     E7           RST    20 
 5CDO     310EOO       LD     SP. OOOE 
 3CD3     00           NOP 
 
All  the values displayed here are in Hexadecimal, although in this 
display the  # character  is not  used.  (As  always, when  you are 
entering  the start address and  the end address, you  can do so in 
either  Decimal or Hex,  but if you  use Hex, you  must precede the 
number with #.) 
 
The first column  shows the  address in  memory; the  second column 
tells  you the bytes forming the instruction at this address; while 
the third  and fourth columns are  a machine-code Mnemonic, showing 
the programmer clearly what operation is being performed. 
 
Newcomers to machine-code  may  be  Interested  to  know what  the 
Mnemonics mean in this example: 
 



Nop                 - No Operation at this address. 
 LD  BC, 0037        - Load the register BC with the value 
 0037 
 (NB:  "register" refers to a location in the computer's CPU - It is 

a location in ROM; whereas "address" refers to a location in memory 
 - a location in RAM.) 
 RST 20              - Restart at Restart Code number 20 
 LD  SP. OODE        - Load the Stack Pointer with the 
 value OODE 
 

From  this,  you  should  be  able  to  see  that  there's  nothing 
 particularly mysterious  about Mnemonics - although  if you want to 
 understand them fully, you'll need to do some further reading. 
 

Note  also that  not all  the possible  addresses are  listed.  For 
 example  the  listing  jumps  from  5CCC  to  5CCF  (missing  out 
 addresses  5CCD and  5CCE).  In  this case.  this is  because the 
 instruction at address 5CCC is executed over three address lines. 
 

Experienced programmers will  know what  they want  to do  with the 
 Disassembly.  Newcomers  will probably find  the other Pick-POKE-It 
 facilities more useful  at  first.   However,  you  might  like  to 
 experiment  by loading a game and printing out the disassembly.  Or 
 try typing in a short  Basic  program  (for  example,  the  Squares 
 program  in the PLUS  D manual) to  see what a  Basic program looks 
 like in machine code. 
 



DISPLAY MEMORY

This  facility displays the Spectrum RAM  data either to the screen 
or the printer.  A typical display would be arranged like this: 
 

23936    #5D80      245     #F5     PRINT 
 23937    #5D81       34     #22     “ 
 23938    #5082       83     #53     S 
 23939    #5D83       84     #54     T 
 23940    #5D84       79     #4F     0 
 23941    #5D85       80     #50     P 
 23942    #5086       32     #20 
 23943    #5D87       84     #54     T 
 23944    #5D88       65     #41     A 
 23945    #5D89       80     #50     P 
 23946    #5D8A       69     #45     E 
 23947    #5D8B       34     #22     “ 

Column I displays the address number in Decimal   Column 2 displays 
the address  in Hex.  Columns 3 and 4  display the RAM data at that 
address  in Decimal and in Hex respectively.  And column 5 displays 
the data as an ASCII value where appropriate. 
 
Let's look at  column 5 more  closely.  At address  23936. the code 
245  Decimal can be (and is. in this instance) represented in BASIC 
by the keyword  PRINT.  Similarly  the code  34 Decimal  at address 
23937  has an ASCII value equivalent to  "; and the code 83 Decimal 
at  address 23938 has an ASCII value  equivalent to S.  If you read 
down the  right-hand column,  you'll see  that the  instructions at 
this range  of addresses  is responsible , for printing  the message 
"STOP TAPE"  on the  screen.  Notice  the consistencies:  the ASCII 
value T always has a code representation of 84 Decimal (#54). while 
0 has a code representation of 79 Decimal (#4F).  Can you estimate 
from  this information the Decimal and Hex code representations for 
Q, U and G? 
 
At address 23942 there is no ASCII value marked in our example.  In 
fact. many addresses will have no information in column 5, or there 
may  be a yellow or white square on the screen.  If you see a blank 
yellow square, then the ASCII value la a space.  If you see a blank 
white  or an unmarked square in column 5, then the address contains 
a machine-code instruction or a status value that has nothing to do 
with an ASCII value. 
 
There's  one small  problem.  In  the example  above, the  code 245 
Decimal (#F5) is said  to be  the equivalent  of the  BASIC command 
PRINT.  From the ASCII values which follow, we can see that this is 
an interpretation which  is  likely  to  be  correct  -  the  BASIC 
statement PRINT  "STOP TAPE" makes sense.   However, in a different 
context,  245   Decimal  may   have  another   meaning  altogether 
Instructions in the immediate vicinity may have changed the meaning 
 



Slightly or completely. To draw parallel which may make this 
Easier to understand the same thing happens in language.   For 
Example the word FED has a basic meaning which has something to do 
with food and eating.   However, in the context. I'M FED UP it 
departs from its basic meaning completely, although it still looks 
to be the same word. 
 
For this reason, some of the BASIC command words or ASCII values in 
column 5   may be an inaccurate   interpretation of the code 
representations in columns 3 or 4.   How do you know which are 
correct and which are not? Experience and a little commom-sense! 
Patches of column 5 will look like normal lines of BASIC - and they 
Probably are. Others won’t  - and they probably aren't. However 
it will make enough sense for you to be able to search for 
particular areas of the program - and well see how to do this in 
the section on Searching RAM. 
 
To display the memory, select option 7 from the Pick-POKE-It menu 
screen.   Then follow the instructions on pages 9 and 10 to specify 
addresses and other values. 



EDIT RAM CONTENTS

This is the Pick-POKE-It facility  which  actually  allows  you  to 
 change  your programs.  Experienced programmers  may want to change 
 entire  screens or perhaps  sprites, having located  them using the 
 Disassembler  or the Display Memory facilities.  But for beginners, 
 there's plenty of information in the standard Spectrum magazines to 
 allow you to enter infinite lives  or energy or ammunition easily. 
 You'll be able to look at all your old games in new ways. 
 
When  starting out, try finding a so-called "Multiface Poke" in one 

 of  the magazines for  a game In  your possession.  Here  are a few 
 examples, culled from recent magazines: 
 

PAPERBOY 
 49263,0           - Infinite Papers 
 50577,190         - Infinite Lives 
 50495,201         - Immunity from injury 
 

STARGLIDER: 
 54647,201         - More fuel 
 54690,201         - More shields 
 

BMX KID2 
 52108.0           - Energy 
 

LAST NINJA II 
 29966.n           - n - Lives 
 40777,0           - Lives 
 

PLATOON 
 31138,0           - Grenades 
 31268,0: 31269,0  - Hits 
 31270.0           - Morale 
 
Each of  these codes  is an  address (in  Decimal), then  after the 
comma a machine-code Instruction (in  Decimal)  to  enter  at  this 
address. 
 
If you haven't  already done  so. boot  up using  your Pick-POKE-It 
disc,  and then load the game in the normal way.  If the game isn't 
on the  same disc as Pick-POKE-It. it'll  make things easier if you 
save  it there.  Bring up the  normal Pick-POKE-It screen, and then 
select option 4 or 5 as appropriate to resave the game.  Go back to 
the  Pick-POKE-It menu screen and select option 8.  You'll be asked 
to specify the start address. 
 
In  the case of PAPEHBOY, you'd type in 49263.  This would bring up 
this display: 
 



ENTER NEW VALUE ($ for STRINGS) 
 RESTART (R) EXIT (X) CONT (ENTER) 
 

Start Address >: 49263 
 

49263     #C06F    61    #3D    - 
 

Value  >: 
 
Columns  1 and 2 display the start address, and columns 3 and 4 the 
current code representation at this address respectively  while the 
right-hand column shows the ASCII value. 
 
To  have infinite papers in the game, the value you need to type in 
is 0.  Simply type  0. then  press ENTER.   You'll see  the amended 
line displayed: 
 

49263     #C06F     0    #00 
and the next address - 49264  -  will  appear,  ready  for  further 
amendment.  But  you don't want to amend  this: the next address to 
change is 50577.   So press R.  then enter to  restart.  When asked 
for the  address, type 50577, and do  the same as before.  Continue 
until  you've made all your changes.  Finally type X. then ENTER to 
return to  the main menu, and  X again to return  to the game   All 
your changes will be retained in  RAM,  and  you  should  now  have 
immunity, and  infinite lives and papers as  you play   If you wish 
to  save this  version of  the game.  take a  snapshot save  in the 
normal way. 
 
If  you'd wanted to make a change at address 49265 but not at 49264 
above,  you could have pressed ENTER at 49264 to keep the same line 
and pass on directly to the next address. 
 
You  can also use the Edit RAM Contents facility to change an ASCII 
string - for example, you might want to change the words HIGH SCORE 
on  screen to  BEST SCORE,  but we'll  deal with  that in  the next 
section. 
 



SEARCH RAM

This facility allows you to  search  the  contents  of  RAM  for  a 
number,  or a sequence of numbers, or for a string of ASCII values. 
Once  you have found what you were looking for. you can then choose 
to  disassemble, to  display memory,  or to  edit memory  from that 
point - or to continue the search for the next occurrence.  Because 
this combines the  features  of  all  the  Pick-POKE-It  facilities 
mentioned so far. it  is likely  to be  the one  you will  use most 
often. 
 
Suppose you wanted to change  the  text  HIGH  SCORE  displayed  on 
screen  during a game to the text BEST SCORE.  To try this. we took 
the  game BMX RACERS, loaded  it in the normal  way, brought up the 
Pick-POKE-It main  menu. and  then selected  option 9.   We started 
searching from the default value of 23755 Decimal, but to make life 
a little more difficult we started searching not for HIGH SCORE but 
simply  for SCORE.  To do this entered the value SSCORE.  (Remember 
that when  you type in an ASCII value,  you need to precede it with 
$ .)  The message - 
 STRING FOUND AT  : - 41674  (#A2CA) 
appeared, together with a sub-menu: 
 

1)    DISPLAY MEMORY 
 2)    DISASSEMBLE 
 3)    EDIT MEMORY 
 4)    CONTINUE SEARCH 
 R)    RESTART SEARCH 

X) QUIT 
 

We  chose option  1 -  DISPLAY MEMORY - which  showed us  that the 
string SCORE did Indeed begin at address 41674.  But to see whether 
this was the HIGH SCORE display that we were looking for. we needed 
to go back a few  address  lines  further.   So  we  entered  R  to 
restart, and specified a start  address  of  41665  Decimal.   This 
showed that  the ASCII string at this  location was only SCORE, not 
HIGH SCORE.  We entered X,  which  returned  us  to  the  sub-menu; 
option 4  then continued the search for  the next occurrence of the 
string  SCORE.  This wasn't the one we were looking for either, and 
we had to  continue several  more times  until eventually  we found 
HIGH SCORE beginning at address 44678. 
 
We  then selected option 3 from the sub-menu - EDIT MEMORY. In the 
previous section, we  described how  to change  code with  the Edit 
Memory facility,  but this  time we  needed to  change a  string of 
ASCII values in a sequential sequence of addresses.  First we typed 
in  the required start address -  44978.  The address line appeared 
on the screen with the first letter of the current ASCII string - H 
- in the right-hand column.   When  asked  to  enter  a  value,  we 
entered $BEST SCORE. Immediately, the  nine edited  address lines 
(one address  line for the  space between the  words) appeared with 
all amendments made. 
 



Having made the change we entered X to return to the sub menu. then 
X again to return to the main  Pick-POKE-It menu, then X to return 
to the original program. 
 
When we started to edit  the  program  earlier,  we  were  actually 
looking  at a screen which had HIGH SCORE displayed on it.  When we 
returned to it, the words  HIGH  SCORE  were  unchanged:  this  was 
because Pick-POKE-It has  no effect  on the  current screen  in the 
computer's  memory.  However, as we continued  to play the game, we 
saw that HIGH SCORE had indeed been replaced by BEST SCORE. 
 
We  then took an ordinary  snapshot save of the  program so that on 
all future occasions we would play it with the same change made. 
 

If  all this is new to you, why not experiment by starting with the 
High Score table  in one of  your favourite games  and altering the 
names of the highest  scorers to  your own  name?  There  are three 
things you  have to remember.  First, if  the high score table uses 
special  graphic characters Instead of the Spectrum's own character 
set you won't  be able to search  for an ASCII string  as we did in 
our  example; so, to practise, use a game which does use the normal 
Spectrum  characters.  Secondly, if you're  replacing a sequence of 
letters, the number  of letters  you use  must be  the same  as the 
original.  Finally, when  searching for  an ASCII  string, remember 
that you must use exactly the same letters as the original program: 
if HIGH  Score appears  on screen,  then you  must search  for HIGH 
Score; if it's written HiGh ScOrE, that's what you must type.  This 
is  because the ASCII values for capital letters are different from 
those for lower-case letters. 
 



ADDITIONAL FEATURES FOR PROGRAMMERS

The final two facilities  on  the  main  Pick-POKE-It  menu  -  Z80 
Registers  and Bank  Switching -  wi11 be  best understood  by more 
experienced users. 
 

Z80 REGISTERS

When  the snapshot button on the PLUS D is pressed, the contents of 
all the  280 registers are stored within  the interface so that the 
program can be correctly restarted.  Selection of the 280 REGISTERS 
option from  the Pick-POKE-It menu  allows you to  display and edit 
the stored copy of the registers. 
 
Random changing of the  register  contents  will  almost  certainly 
cause  the Spectrum to crash, or the program in RAM to give strange 
results.  Changing  the SP (Stack Pointer)  or PC (program counter) 
registers will almost certainly have this effect. 
 
When  you exit from the 280 REGISTERS facility you will be asked if 
you wish  to keep the  changes you have  made.  If you  have made a 
mistake or  are in doubt, then answer  NO and the original register 
values will be preserved. 
 
This facility is  a very  powerful aid  to machine  code debugging, 
since it allows the cause of computer crashes to be explored; quite 
often you will be able to recover the program. 
 
In  addition to the normal Decimal  and Hexadecimal modes of number 
entry, this facility allows two other special modes; 
 
BINARY NUMBER ENTRY

Numbers can  be entered in Binary form  by preceding the entry with 
B.  No leading zeros are required. 
 
EDITING HALF OF A REGISTER PAIR

Certain registers in the 280 can be used in pairs for 16 bit values 
(numbers  from 0 to 65535) or as two individual registers for 8 bit 
values  (numbers from 0 to 255).  To allow editing of one half of a 
register  pair without affecting the other, the symbols < and > can 
be used.  The  symbol < is  used to change  the left-hand register. 
and the  symbol > the right-hand register.   The symbol must be the 
first character in the  entry and  must precede  the B  when Binary 
numbers are entered. 
 



BANK SWITCHING

This facility allows you to perform two separate tasks: 
 
(i) BANK SELECT (128K Spectrums only) 
 
The 128K Spectrum  RAM consists of  8 separate 16K  pages, of which 
only  3 are selected at any one time.  The RAM pages are numbered 0 
to  7 and normally pages 2 and 5 are permanently selected, with one 
of the remaining pages 0,1,3,4.6 or 7 being selected as required. 
 
RAM  page 5 is normally located from address 16384 (#4000) to 32767 
(7FFF), page 2 is located  from  address  32768  (#8000)  to  49151 
(*BFFF), and  one of the  remaining six pages  occupies the address 
range 49152 (#COOO) to 65535 (#FFFF). 
 
To enable all of  the  RAM  to  be  accessed  by  the  Pick-POKE-It 
routines,  there needs to be  a method of selecting  the 6 pages of 
RAM at  address #COOO.   The BANK  SWITCHING program  provides this 
faci1ity. 
 
When  the BANK SWITCHING routine is  first entered, the screen will 
show the RAM bank which was  selected  when  the  PLUS  D  snapshot 
button was  pressed.  To select another  page. simply keep pressing 
the space key until the required page is flashing, then press key X 
to exit.  The required  page will  then be  switched in  at address 
49152 (*COOO).   You can then return to  the BANK SWITCH program at 
any time to select another page. 
 
Note that  the page 5 selection  is not one of  the 128K RAM banks, 
but has a special purpose  which  is  described  in  the  following 
section. 
 
There  Is no  need to  restore the  original page  selection before 
exiting from Pick-POKE-It as the exit routine tidies everything for 
you. 
 
(ii) SCREEN AND VARIABLE AREA (48K and 128K Spectrums) 

 
The memory  area  from  address  16384  (#4000)  to  23754  (#5CCA) 
contains  the screen image, channels and Spectrum system variables. 
This  area changes as  the Pick-POKE-It programs  run.  To overcome 
this.  the original RAM  data is saved  as a temporary  file to the 
disc and  a special facility is provided  for looking at this area. 
By using the BANK  SWITCH facility  and selecting  RAM page  5, the 
temporary  tile is  loaded in  from disc  and occupies  the address 
range  49152 (#COOO) to 56522 (#DCCA), where it can be examined and 
edited   without  interference.   The  original  content  of  these 
locations is saved as another temporary file on the disc. 
 



There  is no  need to  restore the  original page  selection before 
exiting from Pick-POKE-It as the exit routine tidies everything for 
you.   If however,  you wish  to restore  the original  contents at 
address 49152  (#COOO) then return  to the BANK  SWITCH program and 
simply select the page  you  require.   In  the  case  of  the  48K 
Spectrum, selecting any page other than 5 will restore the original 
RAM contents. 
 
CALCULATING THE ADDRESS OFFSET

If,  for example, you wished to examine or edit the contents of the 
Spectrum  system variable  ATTR P  (the paper  and ink  colours) at 
address  23693 (#5CBD). it would be  necessary to calculate its new 
location  after page 5  has been selected.   Your calculation would 
be: 
 

23693 - 16384 + 49152 = 56461 
 
Obviously,  this would be tedious, so  a special address entry mode 
is included to enable the program to calculate the address for you. 
The special mode is invoked  by  placing  a  *  symbol  before  the 
address - i.e: 
 

*23693   or    *#5CBD 
 
The  * symbol is considered an invalid character when RAM page 5 is 
not selected. 
 



RECOMMENDED READING LIST

These are books which will help you to learn more about machine 
code programming. Some of them are Spectrum specific; others give 
a more general introduction to the Z80 processor. 
 
Understanding Your Spectrum   - lan Logan    -  (Melbourne House) 
Mastering Machine Code on your ZX Spectrum - Toni Baker – 
 (Interface) 
The Complete Spectrum ROM Disassembly - lan Logan & Frank O'Hara  

 (Melbourne House) 
 
rhe Working Spectrum   - David Lawrence   -  (Sunshine) 
10 Best Machine Code Routines for the ZX Spectrum - John Hardman 
 & Andrew Hewson -   (Hewson) 
Spectrum +2 Machine Language for the Absolute Beginner - 
 Joe Pritchard (Melbourne House) 
Z80 and 8080 Assembly Language Programming - Kathe Spracklen - 
 (Hayden) 
Programming the Z80   -   Rodney Zaks - (Sybex) 
 
If your Interest develops and you wish to write your own 
machine-code routines and programs, we recommend Hi-Soft's Devpak 
a comprehensive Assembler/Debugger with a clear manual. Also 
commended by reviewers recently is Lerm Software's Z80 Toolkit - 
particularly good for writing shorter routines for those who have 
in understanding of the   first   principles   of   machine-code 
programming 
 
contact MGT if you need further details. 
 

Answers to questions on page 8

91              (5 x 16) +11 
242             (15 x 16) + 2 
32 
668             12 x (16 X 16)] + (9 x 16) +12 
0056 
4394 
28191 
43792                                  
65535 (This number is the highest address in the Spectrum's memory) 
 


